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Chapter 2: Acoustic Wave Propagation
Basics

Sound waves require a medium to propagate. As a sound wave propagates, the
particles of the medium are displaced from the equilibrium positions. In addition,
the internal elastic force of stiffness, the restoring force, and the inertia of the

medium result in oscillatory vibrations.

If the displacement of the particle is along the line of the propagation direction,
such a wave is called longitudinal (compressional) wave. In other words, the
medium expands or contracts in the same direction as the propagation direction.

Most sound waves in fluids are longitudinal in character.
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If the displacement is perpendicular to the propagation direction, the wave is
called shear (transverse). In other words, motion of a particle is transverse to the
propagation direction (e.g., bending of a material). Shear waves exist in solids
and very viscous liquids. There is no change in volume or density of the material

in a shear wave mode.
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Displacement and Strain

Suppose the plane zo is displaced to a plane z '=zo+w, w is called displacement. At
some other point in the material (zo+L), the displacement w changes to w+ow.
We are interested in the displacement variation (dw) as a function of z.

Compressional strain : using first order Taylor expansion, we have

5W:d—WL =S ,
oz

S = ow (compressional).

0z

The parameter S is defined as strain, it represents the fractional extension of the
material. Longitudinal motion changes the cube volume by dw*4, where 4 is the
area of the cross section. Therefore, the relative change in volume is ow/L = S

since the total volume of A *L.

Shear strain : similarly, we can define a shear strain (wave propagates in z and

particles displace in y) as

ov
S =— (sh .
2 (shear)

Note that there is no change in area (volume) and density as shear motion distorts

III. Stress

® Stress is defined as the force per unit area applied to the object.
—L
) internal stress
' internal stress applied stress
applied stress T
-T
-T T (T+3T) T+8T
-(T+oT) | T+OT
7z N/
compressional stress shear stress
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® Note that longitudinal stress is positive in the +z direction and negative in the -z
direction, it is also the negative of pressure. The net difference between the
external stresses applied to each side of the objectis 7. 47/4-. Therefore, the net

force applied to move a unit volume of the material relative to its center is d7/4-.

IV. Hooke’s Law and Elasticity

® Assuming a 1D system and small stresses, Hooke’s law states that the stress is
linearly proportional to the strain

T=cS,

where c is the elastic constant of the material.

® In practice, waves propagate in three dimensions. Therefore, stress, strain and
elastic constants become tensors. Conventions for tensor notations and
corresponding reduced notations are listed below (x,y and z denote three space

dimensions).

Tensor notation | Reduced notation

XX

Yy
zz
yz=zy
ZX=XZ

Xy=yx

AN DB

® Thestress 7, and the strain S, (i =1,2,...6) are second ranked tensors, the

1

elastic constant ¢, (i, j =1,2,...6) is a fourth ranked tensor. Note that both the

stress and strain tensors are symmetric. Given the above notation, Hooke’s law

becomes
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® Most biological tissues are often modeled as isotropic materials. In this case, the

above matrix notation reduces to

7,0 [@,¢,¢, 0 0 0 [OI5, O

0 0 []
%ZD [§12 €u €12 0 00 %‘25
U _U,c,c,0 0 0 O§,U

D:%) % []
+[J 00 ¢, 00 4 [
7000 0ol
8 ® 0 0 0 0 c,[GF0

In addition,
¢y =epy T2y,

The above equation holds because when a material is compressed in one direction,
it tends to expand in a perpendicular direction for an isotropic material and small
displacements. Thus, only two independent elastic constants are needed for an

isotropic medium. These two parameters are also known as the Lamé constants
A=¢, and U =c,.Notethat A is the ratio of the longitudinal stress in the z

direction to the longitudinal strain in the y direction. U is also called the shear

modulus (or modulus of rigidity).

® Young’s (elastic) modulus:

T, =(A+20)S,, +A (S, +S,,)
:A(SXX +Syy +Szz)+2l’lSzz >
=AA+2US,

where A is defined as dilation, representing the fractional change in volume.
Since shear stresses are not supported in fluids, by setting 7 and 7y to be zeros,
we can obtain the Young’s modulus (£):
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T, _HBA+2u)
S A+u

zz

E =

® Bulk modulus: it is the reciprocal of compressibility, defined as the ratio of the

pressure to the negative of the normalized change in volume. Therefore,

B =

__p __P
oviv. A

where

__(TXX +Tyy +Tzz) -

= _Bm.
P 3

It is then straightforward to see that

=3A +2U
3

B

Poisson ratio: it is the negative of the ratio of the transverse compression to the

longitudinal compression. Putting 7w = T3y =0, we have

__ A
2(A+ )

S
SZZ

Ultrasonic elasticity imaging

The human sense of touch has been one of the most important medical diagnostic
techniques. It is also a primary screening method for many pathologies, including
breast cancer. However, palpation has been limited to lesions relatively close to
skin surface and has been a very subjective technique. It is therefore of great
importance to be able to detect deep lying, low contrast lesions, such as scarred

renal tissue, in a quantitative fashion.

The contrast of elasticity imaging is based on tissue elastic properties (e.g.,
Young’s modulus or shear modulus). The following figure shows variations of
shear modulus for various body tissues. The shear modulus varies over a wider
range than Bulk modulus, which is strongly related to conventional B-mode
imaging. Therefore, elasticity imaging has the potential to dramatically improve
the ability of tissue differentiation over current imaging methods. In other words,

low contrast lesions (i.e., lesions with similar acoustic impedance as the
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surrounding tissue) which are not detectable in B-mode may be detectable using

elasticity imaging.
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® The general steps in elasticity imaging include
- Static or dynamic deformations using externally applied force.
- Measurements of internal tissue motion using conventional imaging
techniques.
- Estimation of elastic properties of tissues.
static N
vibration
object with object with
different elastic different elastic
properties properties

® In order to simplify the Young’s modulus reconstruction, it is often assumed that

soft tissue is incompressible (i.e., the total volume does not change due to
deformation) and does not support shear stresses (i.e., A/ — o). Therefore,

E =3u and the elastic properties can be described by a single parameter.

® Challenges that need to be overcome before a clinical elasticity imaging system
can be realized include:
- Deformation is hard to control in clinical situations.
- Itis a more complicated three-dimensional problem in practice.
- Lateral displacements are more difficult to measure using phase sensitive
speckle tracking techniques.
- Speckle decorrelation due to structure deformation.

- Computational complexity.
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VI. Wave Equations

® Derivation of the ultrasonic wave equation can be understood by using the

analogy between simple electrical and mechanical resonance circuits.

R
O e L
damping | spring
¢ mass
electrical mechanical

® The motion equation for the electrical system is (based on Kirchhoff’s voltage

law)

2
AL Py Lo B IRy
> dt C

the motion equation for the mechanical system is (based on Newton’s second

law)
miy+mi[—vf+kmw=f(t),
where the analogies are
Electrical Mechanical
q charge w displacement
i=dq/dt current U=dw/dt particle velocity

V voltage f force (stress, pressure)
L inductance m mass

1/C 1/capacitance ke stiffness
R resistance T damping

® For a continuous medium, the mechanical motion equation can be modified as
follows. Assuming a 1D longitudinal plane wave in an infinite, lossless medium,

Newton’s second law states that the net force = mass * acceleration.
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In the above figure, w(z,t) is displacement and p(z,t) is pressure. Therefore,

A(p(z.0) = plz +&,1) = (p Eﬁzm)d D

where p is the density. By taking &z — 0 and using Bulk modulus (B), we have

0w (z,t)
ot?

0w (z,t)

=(B/
(B9~

By taking Fourier transform of the above equation (with respect to time) we have

a general solution of the wave equation (in temporal frequency domain)

W(Z,Ol)) - w, (w)c,—/wz/c +W2 ( w) ej'oz/c
where ¢ =./B/p is the propagation speed of the particle displacement wave. In

time domain, we have

w(z,t)=w, (t—zlc)+tw,(t +z/c)

In other words, the first term represents a wave traveling to the right and the
second to the left.

Since the particle velocity u(z,¢) is defined as u(z,t) =0w(z,t)/ d¢, in the

temporal frequency domain we have

u(z,w) = jww(z, w)
U(Z,w) =y, (w)e—/wz/c +ZI2 ( w)ejaz/c

It is then straightforward to see that

B du(z w)
Jw 0z

=7, (u, (@)™ —u, (w)e’™’*)

p(z,w)=—-—
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where 7z, = pc and is called the characteristic impedance of the medium. Note

the analogy between pressure, particle velocity and voltage, current.
VII. Reflection and Refraction
® A general expression for complex impedance

w —jwzlc _ w Jjar/c
Z(7.00) = p(Z w) _ =7, u, ( )e_w/ u(we _
u(z,w) u (wye”™' " +u, (w)e’™'*

If there is only propagation to the right (or left), then the above equation can be
reducedto Z(z,w)=7, (or Z(z,w)=~-2,).

@ Considering an initial wavefront propagating to the right in the following case,

- Z1 72 >
|
0 L z

since both pressure and particle velocity are continuous functions and medium 2 is
infinite to the right, we have 7, (L,w)=7,,1i.e.,

ul (w)e—ij/C _u2 (a))ej(AL/C a
1 — : -
Ul(w)e JwL | ¢ +u2(w)€jaL/c

2

jarie £y =2,
ARPA

AR A

Z,tZ

—u, (W) =y (wWe

p(z,w) =2 u, (Q)(e ™™/ + 2221 grezmaliey

At the boundary (i.e., z=L), we have

27,
Z,+ 2,

Since medium 2 is infinite to the right, the above equation is also the pressure wave in

p(L,w)=Zu (wye "

medium 2.
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® Now we can define the reflection coefficient and transmission as the following

R. = M (retlection)
27
7. =—"2—(transmission)

® For two-dimensional cases (i.e., where the incidence angle may not be normal) we

have (ignoring shear waves)

Z1 /2

0=06i ut
Ot

v

6i

Since the normal components of the particle velocity at the boundary must be
continuous, then u; cos@, —u, cos 6, = u, cos 6,. Additionally, since the pressure

is also continuous at the boundary (i.e., 7. +7. =7,), it is then straightforward

to obtain the following relations

R - Z,c088. = 7, cosB,

¢ Z,c0s0, + 7 cosB,
a 27, cosB.

¢ Z,cos6, + 7 cosb,

(reflection)

(transmission)

Note that at normal incidence, the above equations reduce to the 1D equations.

® Refraction : As in optics, we can apply Snell’s law

sinf, ¢
sinf, ¢,

where c7 and c2 are the propagation velocities in medium 1 and 2, respectively. If
c1>c2,acritical angle 6 can be definedas 6. =sin"'(¢, /¢, ). For any
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incidence angle greater than the critical angle, total reflection occurs ( i.e., there is

no transmission).

VIII. Impedance Matching

It was previously shown that reflection occurs at the boundary between two
mediums with different acoustic impedance values. Fortunately, a matching layer
can be inserted in between the two mediums in order to avoid reflection at the
boundaries. As shown in the following drawing, we would like choose L and Z1 to
achieve this goal.

CL,A1
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In general, impedance in medium 1 (Z(z,w)) is a complex value

Ul (w)e—jwz/c _U2 ( w)ejaz/c

Z(z,w)=2 — ,
1 Ul(w)e Jowz | ¢ +u2(w)€/wz/c

To avoid reflection at boundaries, we need to have

Z(0,w) = Z,
Z(L,w) =2,

Combining the above equations, we have

Z =2 Z, cos@+]"Z1 s%n@
Z, cos8+ 7, sin 0

where 8= wl/c, =27/ A.Note that by choosing
A
L=Q2n +1)7l for n=0,1,2,...

Zoisreal and 71 =./7,7, . Normally, n is chosen to be 0 and this is called
“quarter wavelength impedance matching”. Note thatif L = A, /2, then

Z, = Z,and this is a trivial case of no discontinuities. Also note that for multiple
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layers, impedance values can be found by iterations.

® Two commonly used units

- Pa (Pascal, pressure) : 122 =1N/m’ =1Kg/(m [$ec?)
- Rayl (acoustic impedance) : 1Ray/ =1Pa/(m/sec) =1Kg /(m* [Sec)
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