Chapter 5 : Diffraction and Beam Formation Using arrays

I. Imaging Model

® Ultrasonic image formation can be described by the following model

, propagation ) )
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Considering one dimensional situations (A-scan), the received signal 1/ (¢) is

given by
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where R(x',y',7 ) is the reflectivity of the body at arbitrary position
(x",y",Z2"), B(x',y'",Z) is the pulse-echo radiation pattern and
p(t—=2z"/c) is the received pulse-echo signal from an ideal reflector at depth

I

zZ .

By scanning in the x direction and assuming the attenuation (e %" )and the

spreading term (1/z") are corrected, the following equation yields
SO =k[[[ Ry, 2)BU = x,y', 2 ) p - 22 avdy'dr
c

Note that without loss of generality, B(x'—x,y',z") can be re-written as

B(x—-x",y",z") (asimple sign change) such that the above equation can be

viewed as a normal convolutionin x.

® [n general, the pulse-echo waveform can be described by

2z
c
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p(t=20y = A -y eosamr, (1 - 22y),
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where A (D 1s the envelope of the pulse and 7, is the carrier frequency of the
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pulse and the waveform distortion due to frequency dependent attenuation is

ignored in the above equation.

® The ultimate goal of imaging (assuming 2D) is to have S'(x,z) = R(x,y,,ct/2),
where y, is the position of the image plane. In other words, B(x—x",y",7")
needstobe d(x—x',y' —y,) and A(r—2z'/c) needstobe O(f—2z"/c).In
practice, however, both 4(0J and B (0 have a finite extent. Therefore, the size

of a pixel in an ultrasonic system is determined by the point spread function,
which is determined by the beam width of B (00 and the pulse width of A (0.

® F(0 is mainly determined by diffraction and will be discussed in detail in the

following section. Assuming an impulse excitation (i.e., flat frequency spectrum),
A(D is then determined by the transducer impulse response. Typically, a

transducer has a fractional bandwidth (bandwidth divided by the center frequency)
of about 70-100%. Such bandwidth results in a two-way duration of about 2-3
periods of the carrier. In other words, the resolution in depth is about 2-3

wavelengths.

® Assuming a linear system, the aforementioned model can then be simplified as

below

propagation pulse echo )
) ol ) Jdisplay
in the body imaging system

In other words, the received signal can be obtained by convolving the impulse
response of the imaging system with the distribution of reflectivity of the body
(including attenuation). This model is also applicable for full three-dimensional

scanning situations. Hence,

pulse echo body
system
=1 B
S LB - R(xy2)
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t=2z/c z

1.€.,

S(x,y,z)=H(x,y,2)ll R(x,y,z)

z=ct|2 *

II. Diffraction from One-Dimensional Apertures

As in optics, diffraction from a two-dimensional aperture determines the
resolution in a plane (x — y plane) perpendicular to the direction of wave
propagation ( z direction). For two-dimensional ultrasonic imaging and for the
sake of simplicity, we will only consider one-dimensional apertures for our

analysis. In other words, we will only be interested in the x direction and ignore
the y direction.

Assuming every point along an aperture can be modeled as an isotropic radiator
of sound, the pressure wave at carrier frequency £, is (i.e., the free-space

Green’s function)

6/](13
P(R) =4, 2

where R is the distance between the radiator and the observer, A is a constant

which will be ignored, and % is the wave number (£ =27/ A, A is the

wavelength).

The continuous wave (CW) radiation pattern from a finite aperture is simply a
superposition of all point sources. Therefore, for a point at (x', ), the pressure

wave becomes

 ;

T (x'2)

aimiade

x=0
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p(x',z)= :[—a’(X,X')dX’

where J (x,x") is the distance from a point x in the aperture plane to a point

I

x" in plane z and the aperture is non-zero between (-a a).

® In the Fresnel region, which is defined as z* >>(x —x')?,

1\2 1\2
X—X X—X
CRT INNCLI 0l

d(x,x")=z(1+
z 2z

and the pressure wave can be approximated by

Jkz | kx't 12z a
cc J.C‘_jk”l/zé‘jhzude.
z -a

p(x'.z)= lIejkzejk(X—X')z/ZZdX —
Z3
Note that with an array, Fresnel approximation can be guaranteed by using a
constant f-number for aperture opening in the near field. The above equation can
be generalized for the case of an arbitrary complex aperture function
C(x)=|C (e,

kz _jkx'* 12z a
W/ 6/

o )
p(X',Z): p J‘C(X)e j](XX/Zej/(X /2de.
.

® In the far field, where ka’/2z <<1, the integral reduces to
jkz _jkx'*/2z a

p(x',z) = ce J'C(x)e_jm'/zdx
z -a

jkz jkx'? 12z ’
= T prlew)]
z

where F.T. stands for Fourier transform.

® When not in the far field, C ()()@/]"‘2 '22 can be viewed as the effective aperture

function. Furthermore, if C'(x) ischosentobe C'(x)= ‘C (X)‘e_ﬂ“z/ * the

integral reduces to the same equation as in the far field, and hence the Fourier

transform relation still holds.
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® An effective aperture C'(x) = |C (X)|e_’“ "22 simply means a lens focused at a

depth z,1i.e.,

z

Letting z, be the fixed focal point of the lens, the effective aperture function at

A’01 10
2 Oz z0O

an arbitrary range z becomes C'(x) = ‘C (X)‘é‘ . In other words, the

Fourier transform relation is still valid by using the new aperture function
C'(x) . On the other hand, the Fourier transform of the radiation pattern (i.e., the

scaled aperture function) can be viewed as the spatial frequency spectrum.

® For a uniformly weighted aperture, the radiation pattern (in the far field or in
focus) is simply a sinc function in combination with some phase terms. In
addition, since the width of the diffraction pattern is directly related to the lateral
resolution ( x' direction), it is clear that the aperture size (24 ) is inversely
proportional to the beam width and therefore proportional to the lateral resolution
(i.e., the larger the aperture, the better the lateral resolution). Similarly, the higher
the frequency is, the better the lateral resolution can be achieved. This is
illustrated as follows.

® Assuming ('(x) is arectangular aperture from —g to a (the phase term can be

ignored),
|p(X' Z)| — ‘Iﬁe_ijX’/ZdX‘ — 1 [ejkx'ez/z _ e—jkx'ez/z]
’ -a Jkx'l z
_ 2asmkaa/z _ ngmc(kxa)
kx'al z z
. . ' A
The first zero-crossing point occurs when kx'a = 1T, or when L =2,
z z 2a
p(x’2)]
IC(x)
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Considering two objects spaced 5 apart in the direction of x', the lateral
response of these two objects can be modeled as the convolution of the objects
with the lateral beam pattern. It is clear that a narrower beam width produces

better lateral resolution, as illustrated as below.

narrow beam wide beam
<+—> <+—>
b b

® [n practice, -3dB or -6dB beam width is usually used to define lateral resolution.

® The above equations are derived for a transmitted wave, the diffraction analysis is
exactly the same for reception due to the reciprocal nature. Therefore, assuming a
fixed aperture, the two-way radiation pattern becomes

B(x",z2)=T(x",z,0,)R(x",2z,@)) =p(x',2)%,

where w, =277, and /| is the carrier frequency. In general, the transmit and

receive apertures are different, thus resulting in different radiation patterns.

® The actual pulse-echo system uses a pulse (i.e., a broad band signal) rather than a
continuous wave. Based on the principle of superposition, the broad band

radiation pattern is

B(x',2)=[T(x",z,@)R(x",z, W) A(Wd &
where A(w) is the spectrum of the pulse excitation.

II1. Diffraction and Propagation Delays
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® Rather than modeling continuous wave diffraction, we can also derive the
radiation pattern using pulse propagation from a point in the aperture to a point in
the field. In other words

p(x',z,t)= IA(f T(x,x",z))cosw, (t—T(x,x',z))dx,

where T(x,x',z) is the propagation time from a point (x,0) to a point

(x",z) and
1
T(x,x',2) =((A'—X’)2+22)2 /c,

where ¢ is the propagation velocity of sound waves. In the Fresnel region,

1\2
Z X=X
t(rx, 7)< L U
2z¢

Note that the first term can be viewed as an overall propagation delay (setting
x =x"'=0) and the second term is a parabolic term which varies with .

® Similar to the continuous wave derivation for diffraction, we can apply

propagation delays across the aperture as the following

2

X
T =
"(x,x',2)= Sy

therefore,

a

p(x',z,t)= IA(z‘-T(X,X',Z)+T'(X,X',Z))coswo (F—1(x,x",2)*1'"(x,x",2))dx

z xx' x" xx' ox'"?

—J'A([——+— ——)Cos W, ([——+— —)dx
c zc 2z c zc 2z

Based on the above equation, we find that at x' =0
p(0,2,6)= [A(s ~Zycosw, (1 =Z)dx =2aA(t ~Z)cos o (¢ =2).
s c c c c

In other words, p(0,z,¢) is simply the replica of the original pulse delayed by
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z/ ¢ and multiplied by the size of the aperture. It is also implied that at the focal

point, signals coming from the aperture should be constructively summed.

When x' #0 (i.e., off-axis), the pressure becomes

a , ’2 _£+ﬁ LZ)
p(X’aZa[)zRe% A([_£+& _) St c z 2 dX%
a c zc 2zc E
Wy (1————— 12 @, xx'
‘Re%j szc J-A([_Z_'_& X_) ch/y%
H zc 2z i

The above equation is simply the same diffraction equation weighted by an
[ 12

envelope term. In the limit where — — 2— is small (i.e., in the vicinity
zc  2zc

of x' =0), we obtain

2 )
E oy (1=Z=2—) z 4

JI%LX’
p(x',z,t)=Rele  °* A(f——)je “ dx [,
= ¢ = H

1.e., the radiation pattern can be approximated by the product of the excitation

pulse and the continuous wave diffraction pattern if it is near the focal point.

IV. Beam Formation Using Arrays

® In the previous section, we have shown that a lens can be formed by using time
delays across the aperture. It also becomes apparent that how an array can be used
to form a beam focused at any particular point in space. Since the reception is
simply reciprocal to transmission, a received beam can also be formed at any
particular point in space by properly applying time delays to the received signals
prior to the summation across the aperture. This is why beam formation is usually
referred to as “delay-and-sum”. The receive beam formation can be illustrated by

the following drawing
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® Since an array can focus beams at an off-axis point, it can replace the need for
mechanical scanning and real-time images can be acquired through electronic

focusing and steering.
® By using a sector scan format, any image point in space can be specified by polar

coordinates (R,0). Assuming S, (7) is the received signal on the i-th element, the

diffraction integral shown in the previous section can be approximated by the

following coherent summation
N
O()=3% 8§, (t-1(x,,R,0)),
=1

where (O(t) is the output signal and

1/2
((XI- —j’esin@)2 + R* cos’ 6) O 2 ox '
T(x,,R.0)= ¥3 PRIy
c c R R
In the Fresnel region,
RY x} x, . x; ., H
T(x,,R,0)==0+—-"Lsinf ——=sin’ 60
cO 2R R 2R 0
=£D—£sin9+X’zcoszeﬂzﬁ—X’Sm L X cos
cO R 2R O c c 2Rc

® The first term in the above equation is independent of the angle and the channel
index, it is simply the propagation time from the center of the array to a range R.
The second term relates to the beam direction and is independent of the range. It
represents the steering component. The third term is a parabolic function and

represents the focusing component. It approaches to zero in the far field.

® The third term in the above equation also implies that when the focal point is oftf-
axis (0 # (), the effective aperture size also reduces from 22 to 2acos6. In
other words, the lateral resolution is reduced when the scan angle is steered off

normal.
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® On transmit, since the array is only fired once, a fixed focus must be specified for
the transmit beam (for that particulr firing). On receive, on the other hand, since
the received signal is continuously stored as a function of time, the receive focus
can be continuously updated. Therefore, the receive can be dynamically focused

in the image range.

® Based on the previous discussion, the transmit beam is formed by applying

relative time delays (relative to the center of the array) across the transducer, i.e.,

x,sin@  x’cos’ 6
- +
c 2Rc

3

TT (XJ”Rae) =

and the receive delay is

. .
e gy 2R s a0
4 ¢ 2Rc

V. More on the Radiation Pattern Using Arrays

® Previous diffraction equations can be re-written by replacing x'/~z with sin8.
Consider the following one-dimensional aperture and a continuous plane wave
(i.e., a wave from the far field), the signal received by the aperture as a function

of the wave direction is

aperture

p(8) = [C(x)e™ " drx.

It is obvious that the Fourier transform relation still holds.
® The above equation assumes a continuous aperture. Considering a sampled
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aperture (i.e., an array) as the following,

-a X a

R : coef T 11T TT teeo

d

the aperture function can be viewed as the original continuous aperture function
(rectangular) multiplied by an “impulse train” with a spacing . Using the

Fourier transform pair (defining / =sin68/A)

_ié(x—jd) - % ié(f—j/d),

[/=—00 j=—00

the new radiation pattern is the convolution of the 7/ domain impulse train and

the original radiation pattern for the continuous aperture, i.e.,

2a/d

! ! I

-Md 0 Md

® Practically, each array element has a finite width w (w <d). Hence, the array

function becomes an “impulse train” convolves with a rectangular function. The
resultant radiation pattern is then the multiplication of the point array and the

radiation pattern of a single transducer element.

%
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® When a beam is steered to a direction 6,, linear time delays are applied and

therefore the radiation pattern is shifted towards the steering angle. However, the

radiation pattern from a single transducer element is not shifted. Therefore,

!

—\/d-sinBg —sinBg Md-sinBp A/w

® Note that as the main beam is steered, secondary beams become stronger. These
secondary beams are also called grating lobes and are due to the fact that when
the spacing between adjacent elements is sufficiently large, there are several
directions of the source that can be summed in phase, just as the signals from the

main source. It can also be viewed as aliases in space.

____ primary beam

secondary beam

® The horizontal axis in the above radiation pattern drawing is sin 8. Physically,

sin @ has to be between -1 and 1. Therefore, to prevent grating lobes, we can have
2<A/d,

or

dsAl2.
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VI.

The criterion is equivalent to the Nyquist criterion for temporal sampling.

Spatial Sampling Criteria

Another way to look at grating lobes is based on the fact that spatial aliasing
occurs when the phase shift between adjacent transducer elements is larger than T
In other words,

27-[1[()( T(X/’Ra 6)_ T(X1'+1 7R, 9)) > 7-[

Using the equations derived previously and assuming R is sufficiently large, we

have

-sin @ L sin@
2m%(£_xlsm _£+ i+ SIN )
c c c c
. 6 . :
_ 270, sin (ro —x) = 27Ts;\n &
c

Therefore, grating lobes occur when

: A
sin@>—.
2d
Since |sin 9| <1, we know that grating lobes will not occur when ¢ < A/2. This

is consistent with our previous conclusion.

The physical meaning of no grating lobes is that the beam can be steered un-
ambiguously. In other words, the beam can be steered to any direction in space

and the received signals are coming only from the main beam direction.

As described previously, a two-dimensional image consists of a finite set of one-
dimensional lines (A-scans). In other words, the two-dimensional image is also
sampled and the spacing between beams also needs to be close enough to avoid
aliasing. This beam spacing can be derived using Nyquist criterion in the spatial

frequency domain shown below

spatial frequency radiation pattern

(aperture function)

F.T.

I sinB/A
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To satisfy the spatial Nyquist criterion (letting the beam spacing be Asin0), we

have

1 1
—_— = 2>94.
Asin@/A b

A :
Therefore, Asinf < v In other words, the spacing should be less than the
a

location of the first zero-crossing point. For pulse-echo imaging, the two-way
effective aperture is the convolution of the transmit aperture with the receive
aperture (since the two-way radiation pattern is the product of the transmit pattern

and the receive pattern), the two-way effective aperture size becomes 44 and the

A
beam spacing should be Asin 6 < T
a

® [f the beam spacing is less than the Nyquist criterion, no additional informational
will be obtained and the frame rate will be reduced since there are more
ultrasound lines need to be acquired. This is equivalent to the temporal sampling

theorem.

® Again, the spatial Nyquist criterion can be obtained by looking at the phase across
the aperture. With a beam spacing Asin @ satisfying the Nyquist criterion
(Asin@ = A/2a), the phase difference across the aperture between two adjacent

beams becomes (ignoring range R)

27T]%(T(3,R,61r+1)_ (-a,R, 6j+1 )~ ( T(£7R791’)_T(_3’R’61' )
=27 (Qansing) = 2T 2
c c 2a

27T

In other words, the spatial Nyquist criterion states that when the phase difference
across the aperture between two adjacent beams is larger than 277 (one cycle),

aliasing occurs.
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VII. Diffraction for Two-Dimensional Apertures

® The derivation for diffraction from two-dimensional apertures is similar to one-
dimensional situations. For any point in the three-dimensional space, the
pressure wave is the integral of waves from all point radiators on the aperture
and each point radiator has its own amplitude and phase (or delay) relative to the

point in space. In other words,

Jkd ((x,y),(x", ¥")

e
” ,7 = dd 9
px.y.2) J;[d«x,y),(x',y')) e

where d ((x,y),(x',y")) is the distance between a point (.x,y) in the aperture
plane (plane z =0)toapoint (x',y") inplane .

(x’,y’,z)

® In the Fresnel region (or far field), the two-dimensional radiation pattern can also
be obtained by Fourier transforming the two-dimensional effective aperture

function. If the aperture function is separable, i.e.
Cl,y)=C)CW),

the radiation pattern is also separable, i.e.,

B(x'.y'\.2)=B(x',.2)B(y'.2)= F.T[C(x0)| F.T[C(x).

Note that since a rectangular function is separable, the radiation pattern from a

rectangular aperture is the product of two sinc functions.

® For two-dimensional circular apertures, the radiation patterns can be found by
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using one-dimensional transforms based on symmetry. Assuming a uniformly
apodized circular aperture, the radiation pattern also resembles a sinc function,
except that the sine function in the numerator is replaced by the first-order Bessel

function. Such a function is also known as a “jinc” function.

For real-time two-dimensional imaging, one-dimensional arrays are usually
adequate. In other words, the scanning in x is done electronically, as we have
discussed previously and there is no scanning in y. To provide better focusing
quality in the main region of interest of a particular transducer, there is usually a
mechanical lens attached to the front of the array in order to provide fixed,
geometric focusing in the non-scan direction (i.e., y). To perform real-time three-
dimensional imaging electronically, on the other hand, fully sampled (Nyquist
criterion is satisfied in both x and y) two-dimensional arrays are obviously

required.
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