Chapter 4 : Transducers - Generation and Detection of Ultrasound

I.

II.

Introduction

Transducers are used as both transmitters and receivers, converting electrical
energy to acoustical energy and vice versa. In low frequency applications (below
20KHz), microphones and loudspeakers are two well-known examples. For
diagnostic ultrasound, higher frequencies are required and piezoelectric materials

are most commonly used.

Piezoelectricity is defined as the generation of an electrical polarization in a
substance by the application of a mechanical stress and, conversely, a change in
the shape of a substance when an electric field is applied. In other words, a

material is strained when an electric field is applied to it.

Commonly used piezoelectric materials include naturally occurring crystals, such
as quartz and certain man-made ceramic materials, such as lead zirconate-
titanates (PZTs). Crystals such as quartz are inherently piezoelectric, with
properties determined by their crystallographic features. In contrast, man-made
ceramics are polarized above the Curie temperature (typically around 320-370°C
for PZTs) by the application of strong electric fields to induce anisotropy
responsible for their strong piezoelectric properties. PZTs are the most commonly

used piezoelectric materials for diagnostic ultrasonic imaging.

In addition to PZTs, PVDFs and composites are two other commonly seen
materials in medical ultrasound. PVDF is often used for acoustic field
measurements due to its broad bandwidth and sufficiently small thickness. Note
that small thickness is necessary in order to minimize the interference of sound
field due to the presence of the hydrophone. Composite materials, on the other
hand, have gained wide interest due to the potential of improving imaging

performance.
Piezoelectric Constitutive Relations
Consider the following figure, in which the equilibrium spacings between

neighboring rows of atoms are L, al and a2, and q is the magnitude of the charge

of the atoms,
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the polarization (per unit volume) of the object is

dipole strength of unit cell _4q (a2-al)
volume of unit cell L (R+al)

P=

® In the presence of strain S, al and a2 change to al+Aal and a2+Aa2, respectively,
and the polarization changes to P+AP. Since Aal=al-S and Aa2=a2-S, under the

conditions that Aal and Aa2 are small, we obtain
AP =PS=eS,

where e is defined as the piezoelectric stress constant. The total change in
electric displacement (or electric flux density) in the presence of an electric field

E is
D=&E+AP =€¢F +¢ef,

where € is the permittivity with zero or constant strain. We find that the electric

displacement in a piezoelectric material is dependent on both the electric field and

the strain.

® Similar to the above derivation, we can determine the stress in a piezoelectric
medium due to an electric field E. Since the forces per unit area on the positive

and negative atoms are +¢E/L’, the stresses in the regions of length al and a2 are

therefore
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The average internal stress in the medium due to the electric field is

_al +aAT, _

T
4 al+a

ek .

The total stress (7., ) applied to the object is the sum of the externally applied

1620
stress T'(or 7 . ) and the internal stress T¢ (or 7, ). According to Hooke’s

onpiezo

law and defining ¢, as the elastic constant (under a constant electric field

condition), we have

T+7T, =cpS
T'=cpS—eE
(OI' T pIezo = T nonpiezo + 7;166[ )

® Equations D=¢E+eS and 7 =c.S5 —eF are known as piezoelectric

constitutive relations. The above derivation assumed one-dimensional situations,
where a single scalar e is adequate to represent the coupling between the elastic

and electric properties.

II1. Wave Propagation in Piezoelectric Materials

® Equations governing the acoustic wave propagation in a piezoelectric material are
obtained by using Newton’s second law with the constitutive relations. Based on

previous derivation of one-dimensional wave propagation in a non-piezoelectric
material, we can replace the bulk modulus B by the elastic constant ¢, and

d°w(z,1)
or?

=(c,/ p)% 9 w(z.t) _ O(eE(z.0)/e,)0

=(c,/ .
0: (e 'O)E oz’ Oz 0

Re-arranging the above equation, we obtain
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0°w(z,t) _ p 9°w(z,t) _ 1 9(eE(z,1))
oz’ c, O c, Oz

® [magine the piezoelectric material in the form of a plate with metal electrodes on
each face. If the electrodes on opposite faces are short circuited, the electric field
is reduced to zero and the above equation is reduced to a homogeneous wave
equation. On the other hand, if the electrodes are open-circuited or if the medium
is infinite long in z, there would be no free charges in the transducer medium (i.e.,
D is a constant in z, but may be a function of time). Under this condition, the
above equation takes the following form by applying the other constitutive

relation

’w(z,t) _pOw(z,1) _ e 0D(z,t) _ er *w(z,t) __ e’ 0*w(z,t)
oz’ B o &, Oz &, 07’ &, 07°

P w(z.t) O P 20w (2,0) =0

o7 Hp(t+e*/ec,)H o

velocity

' B . o
® Note that ¢ = |— represents the propagation velocity in a non-
\' p

piezoelectric medium. From the above equation, we have
5 2
Cp11'€zq - Cninp{'é’zo D + c H
velocity velocity
g &0
It is then obvious that acoustic waves propagate at a higher velocity when the

material is being piezoelectrically stiffened. The elastic constant under a constant
electric displacement condition (¢, ) is related to that under a constant electric

field condition (¢, ) by
cp,=cyH %t i
D E &,
@2
The quantity %, where k> =—— | is known as the electromechanical coupling

constant. The magnitude of the electromechanical coupling constant is a useful
index of the strength of the piezoelectric effect in a particular material. Note that

€ 1is the dielectric permittivity under a constant strain condition.
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IV. Piezoelectric Generation and Detection of Ultrasound

® Ultrasonic waves are generated by the application of an external electric field to a
piezoelectric material. A previously derived inhomogeneous wave equation
indicates that a gradient in eE (the product of the piezoelectric stress constant and
the electric field) is the source for the generation of mechanical disturbances.
Usually the surfaces of a piezoelectric material offer the sharpest discontinuity in
both e and E, hence they are the strongest sources of sound. This can be shown by
the following simplified figure. Assuming a parallel plate capacitor containing a

piezoelectric material of dielectric constant €.

oIl = o

0

(a) (b) (c)

® Consider the application of a charge density to the capacitor shown in figure (a).

Since there are no free charge between the plates, we have dd—D =( and hence D
7z

is a constant as illustrated in the figure (b). Additionally, the permittivity is
typically higher inside the piezoelectric material, thus making the electric field £
smaller than E in the outside. Therefore, figure (c) can be used to represent £ and
it becomes apparent that the only gradient in the electrical field occurs at the
surfaces of the material. Consequently, the surfaces of the piezoelectric material

are the predominant sources for the generation of ultrasound.

® Piezoelectric detection of ultrasonic waves is reciprocal to the process of wave
generation. In other words, the conversion of mechanical energy into electrical
energy is also a phenomenon dominated by the behavior at the surfaces of the
piezoelectric material. As shown below, the voltage measured across a
piezoelectric plate is the integral of the electric field over the thickness of the

crystal
L
V(r) =I0 E(z,t)dz
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Using the constitutive relation relating the electric field to the strain and the

electric displacement, the voltage becomes

V(z‘)——J' C5(z.0dz +] D(Z Dz

q()

From Gauss’s law, we have D(z,f) = where ¢ (¢) is the total charge on

area A . Therefore, the above equation reduces to

LOw(z, [) q(z‘)
Vo= SL o0z EA/L

= -(w(L,0-w(0.0) +2(0)

0

where () = % is the capacitance of the piezoelectric plate. The magnitude of

the net displacement can be calculated from the boundary conditions placed at the
surfaces of the material. In addition, the above equation shows that under open
circuit situations, i.e., ¢(¢) is not time-varying, the voltage developed across the
plate is directly related to the relative displacements of the front and back surfaces
of the material. If the thickness of the plate corresponds to an odd integral number
of half-wavelengths of the ultrasonic wave impinging on the material (i.e., the
two surfaces oscillate 180° out of phase), then the relative displacement of the
front and back surfaces, w(L,z)—w(0,t), is the largest. In contrast, if the
thickness of the crystal is an even number of half-wavelengths, then the amplitude

of oscillation of the two surfaces is in phase, and therefore,
w(L,t)-w(0,t)=0

V. Equivalent Circuits
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® Based on the piezoelectric detection equation that we previously derived, we have

V()= =S L.=w(0,0) +Qg> .

0

Taking the partial derivative with respect to time on both sides, we obtain

| :
i) =0, I;Y)+CO§(U(L,[)—U(O,1‘))

which can be represented by the following equivalent circuit.

i(t)

+

vy = ¥ l Coe/e(u(L.H)-u(0,)

® Defining force as we do voltage in electrical circuits, and particle velocity as we

do current in electrical circuits, the non-piezoelectric component can be described

= T(20) ey + SLLD)

using the other constitutive relation (i.e., 7' (z,t) nonpiczo O
&

prezo

and represented by the following circuit (a transmission line)

L , — D
ZI Zz
+ +
V1 VZ
Z3

where 7| =7, due to symmetry. Let 7 represent the characteristic impedance

of the piezoelectric material, we can obtain the following equations using

methods similar to those used by deriving the acoustic wave equations

V(Z,O)) - Vl (w)e—fwz/c +V2 ( w)ejaz/c

[(z,w) :ZL(VI(O))G'_MZ/C =V, ( w)c,jaz/c)‘

0

® In order to obtain |, and 7, the following relations need to be used.
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_n _V(L,w)
Zs -[—1 5,=0 _m‘zu,m:o
v )
Zy + Zy :[_i 5,=0

Letting 7, =0, the following equation yields
Zo](L,&)) =0= Vl ((A))é’_jwl’/c _VZ ( w)ejai/c.

Therefore
1/2 (w) - 1'/1 (w)€_2ij/C .

and

14 (w)(e—/wuc +€—jaL/c) ) Z, )
0 I/l (w)(l _6—2/&1/0) B ]SH’IZTIZ/ A -

3

—JZ, cosec2TL ] A

Furthermore, 7, (=2, ) can be obtained as the following:

_V(0,w)

Z, = CoS2ML/ A—-1 _
/(0,w)

"Ly =Ly —————— =, tanTIL/ A
,=0 3 0 Jsin2ml] A J< lan

® By using a transformer to couple the electrical components with the acoustic
components, we then obtain the following equivalent circuit (a.k.a. Mason

Equivalent Circuit)

Z3

-Cy I/

i(t)
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® With the front and back faces of the transducer being loaded by mechanical
impedances Z, and Z,, the equivalent circuit can be re-drawn as the following:

| | VA

g 7y 7y
::Co I:N

® The above circuit can be further transformed to the following circuit identity with
Z4=1/ Z].

| | 274 278

27, i/
——Co 1:2N

278 Zy

® In the neighborhood of a mechanical resonance, impedance of the branch
containing 27, is large and the branch can be neglected. Therefore, the model can
be approximated with the following circuit. Such an approximation is adequate to
describe the operation of a transducer near resonance driving a wide variety of

mechanical loads.

| | 274

Zp
—C 1:2N

Zy
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® An alternative equivalent circuit (KLM Equivalent Circuit) has been developed to
be better suited for broadband operations. Please refer to the following paper if
interested.

- D. Leedom, R. Krimholtz and G. Matthael, “Equivalent circuits for transducers
having even or odd symmetry piezoelectric excitation”, [EEE Trans. on Sonics
and Ultrasonics, vol. SU-18, No. 3, pp. 128-141, July 1971.

VI. Design Considerations for Broadband Transducers

® Broadband transducers are necessary for pulse-echo imaging applications in order
to achieve high range resolution, which is inversely proportional to the pulse
bandwidth. However, a short pulse is usually achieved by sacrificing sensitivity.
Considering the following piezoelectric transducer with no matching or damping

layers, it rings and produces an unacceptable long pulse.

body

LZd

By placing a lossy material (highly attenuating) which has a similar acoustic
impedance as the PZT, the reflection at the back of the transducer can be reduced
and therefore the pulse can be shortened. Apparently, sensitivity is degraded due
to attenuation.

body

N~
vV Y

LZd

sunjoeq

The acoustic impedance of a typical PZT material is around twenty times higher
than that in the body, therefore, part of the sensitivity loss can be recovered by
adding one or multiple quarter wave matching layers at the front surface of the

transducer.
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® Two-way insertion loss, defined as the ratio of the available electrical power
generated by the device as a receiver to the electrical power dissipated in the
device as a transmitter under the conditions in which the acoustic wave produced
is reflected from a perfectly reflecting interface and received by the same
transducer, is often used as a measure of the electromechanical efficiency of the
transducer. The lower the insertion loss is, the higher the sensitivity can be

achieved.

® Equivalent circuits can be used to match both the mechanical impedance and the
electrical impedance. Ideally, real part of the electrical impedance should be
500hms in order to match a typical transmitter output impedance. Imaginary
part of the impedance, on the other hand, should be to zero in order to obtain
optimal efficiency. This is typically done by placing an inductor (as a tuning
element) to cancel the capacitance of the transducer (and sometimes the
transducer cable). However, the improvement in sensitivity is often gained at the

price of bandwidth of the spectrum.

® An acoustic lens is often placed on the front of the transducer in order to provide
a fixed geometric focusing. This is particularly important for imaging using one-
dimensional arrays, in which case the geometric focusing is provided along the

non-scan direction.
® A transducer array consists of many piezoelectric elements. The elements are

arranged depending on specific scan formats. A typical diagram of a one-

dimensional transducer array is shown in the following.
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